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We study the behavior of a confined granular layer under shearing, in an annular cell, at low velocity. We
give evidence that the response of the granular layer under shearing is described by characteristic length scales.
The tangential stress reaches its steady state on the same length scale as the dilatancy. Stop-and-go experiments
performed at several driving velocities show a logarithmic increase of the static friction coefficient with
waiting time, followed by rejuvenation on a characteristic length of the order of the magnitude of a Hertz
contact between adjacent grains. The dilatancy does not evolve during the stop, neither during the elastic
reloading when thedriving is resumed. There is a small variation whensliding sets anew, which corresponds
to the rejuvenation of the layer, and this variation is independent of the waiting time. We argue that aging is due
to the behavior of individual contacts between grains, not global evolution of the piling. Under an instanta-
neous increase of the velocity, the tangential stress reaches a new steady state, exhibiting velocity strengthening
behavior. An increase of dilatancy is also observed. It is much larger than fluctuations in the steady state,
variations in a stop and-go-experiment, but much less than for shearing of freshly poured grains. The dilatancy
variation during a velocity jump is not due to structural rearrangements of the piling. The evolutions of
tangential stress and dilatancy are logarithmic in the ratio of upper and lower velocities.
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I. INTRODUCTION

The behavior of a sheared granular medium is important
for the design of silos and hoppers used to handle and store
many industrial materials[1] or for the understanding of the
frictional behavior of earthquake faults[2,3]. This is also a
fundamental question of granular mechanics. In this paper,
we are concerned with low shear rates[see below, Eq.(1)].
Problems of interest in this regime include stick-slip insta-
bilities [4,5], coupling between friction and dilatancy
[4,6–8], behavior of the granular layer at large shearing dis-
tances [9,10], shear banding and strain localization
[3,6,10–13], aging[5,12,14,15], and response to an instanta-
neous velocity jump[3,7,16]. In what follows, we will insist
on the approach toward a steady state, then discuss aging
under constant normal and tangential stress, and last the re-
sponse to velocity jumps.

Many laboratory devices may be used to study the re-
sponse of a granular layer to shear. The simplest apparatus
may be a plate, placed on the top of a granular layer, driven
at a controlled velocity[8,14]. The granular matter may be
put into two boxes, separated by a small gap, in relative
translation and under normal stress: the direct shear box[6].
Geophysicists simulate the granular matter contained in
faults by inserting a granular layer(the gouge) between two
granite blocks; the relative translation and normal stress are
applied to those blocks[7,15]. An inconvenience of those
setups is that the displacement is limited to a few centime-
ters. One way to avoid this limitation is to use a Couette
geometry [10,12,13]. In this geometry, experiments have
been done at constant density[12,13] or under constant pres-
sure by submitting the granular layer to a radial stress[10]. A
third possibility is the use of an annular plane Couette geom-
etry [3–5,9,16], in which the grains are contained in an an-
nulus, relative motion imposed between this annulus and the
cover plate, and constant pressure applied on the cover plate.

If the mean radius of the annulus is large compared to its
width, we can neglect the radial velocity gradient and this
setup is very similar to the direct shear box. This is the
geometry used in the present study.

A peculiarity of our shearing apparatus is that the grains
cannot escape from the cell, allowing unambiguous measure-
ments of the layer dilatancy. When poured in the experimen-
tal cell, the grains are in a dense state. The average volume
fraction is 0.61% ±1%(see below, Sec. II B), very close to
the so called random close packing of 0.637[17]. In this
regime, shearing necessarily implies dilatancy of the granu-
lar layer [18]. The coupling between shear stress and dila-
tancy is still an open problem in granular media mechanics,
about which we provide experimental information.

Our experiments are done at low driving velocityV, typi-
cally VP f3310−3,1g d/s in units of grain diameterd per
second. More precisely, we may define a dimensionless shear
rateI [19], which compares the relative importance of inertia

and confining stresses. With theV angular velocity,R̄ the
mean cell radius,H the cell depth,r the grain density, andN
the normal stress, we set

I ;
sVR̄/Hdd

ÎN/r
P f2 3 10−6,2 3 10−4g. s1d

We are thus always in a very-low-shear-rate regime.
In our experiments, we impose the driving velocity and

normal stress to the system and measure global quantities,
the average tangential stress, and the average dilatancy of the
layer. We carefully compare the dynamics of those two quan-
tities. We study the transient to reach a steady shearing, be-
ginning with freshly poured grains, under a constant driving
velocity. We then discuss stop-and-go experiments and aging
and the system response to instantaneous velocity jumps.
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In Sec. II, we describe our experimental configuration.
Section III is devoted to the presentation and discussion of
our experimental results. More specifically, we discuss
steady-state shearing of freshly poured grains in Sec. III A,
stop-and-go shear experiments in Sec. III B, and velocity
jumps in Sec. III C. The conclusions are summarized in Sec.
IV.

II. EXPERIMENTAL SETUP

A. Description of the apparatus

The experimental setup is an annular cell of inner radius
103 mm, outer radius 117 mm, and depth 20 mm. It is
placed on an annular rotation stage(Newport RV240PP),
with a stepper motor drive. The cover plate is prevented from
following the rotation by using a cantilever spring, of stiff-
nessk=2.253105 N/m. In order to shear the bulk of the
granular layer, the cover plate has steel teeth, 5 mm long,
every 30°(see Fig. 1). With this setup, shearing occurs in the
plane tangent to the teeth extremities.

The cell width s14 mmd is much smaller than its mean

radiusR̄ s110 mmd, so that in the following we consider the
shearing velocityV as almost uniform in width, simply re-

lated to the angular velocityV by V=R̄V. This has been
shown to be basically correct for annular cells much larger in
comparison with their mean radius[5]. The angular velocity
V ranges from 50310−6 to 16310−3 rad/s, so that the ve-
locity ranges from 5mm/s to 1750mm/s, that is, from 3
310−3 d/s to 1d/s in units of a grain diameterd
<1.5 mm. The experiments are thus all done in the low-
shear-rate regimeI !1 [see Eq.(1)].

The cover plate is free to move vertically, and three posi-
tion sensors measure its height. With those three measure-
ment points, we get the mean displacement of the cover,
hence the dilatancy of the granular layer. The cell and cover
are designed in such a way that no grain can escape during

the shearing, despite a gap between the cover and annulus
that prevents friction between them.

The deflection of the cantilever spring is measured by
another position sensor, in order to know the mean shearing
stress applied to the granular layer. Some masses may be
added to the cover plate, so that the weight is in the range
f32,110gN (which corresponds to a normal stressN between
3.30 and 11.34 kPa). The weight of the cover alone is more
than 12 times that of the grains themselves.

B. Preparation of a sample

The grains are glass beads, of diameter 1.5% ±10%mm.
Before using them in an experiment, we wash them carefully
in distilled water with an ultrasonic cleaner. This manipula-
tion spectacularly decreases the wear during the experiments:
it allows up to 15 m of cumulated sheared distance without
any systematic variation on the effective friction coefficient
or dilatancy. It suppresses also stick-slip oscillations during
shearing.

In order to improve the reproducibility of our experi-
ments, we prepare all samples in the same way. The grains
are poured with the help of a hopper, maintaining a constant
angular velocity of the empty cell of 20° /s. When the cell is
full, the upper surface of the grain is not flat. We thus change
the velocity down to 5° /s and drop the beads that may be in
excess with the help of a rake. At the end of this process, the
height of the grains layer is 20 mm±75mm, and its mass is
266±2 g—, that is, an average volume fraction of
0.61% ±1%. Granular media dynamics is oversensitive to
small variations in density[20], and this uncertainty is most
likely responsible for the scatter of the effective dynamical
friction coefficient(see below section III A).

The zero of dilatancy is, in all experiments, chosen to be
the position of the cell cover when we place it on the freshly
poured grains. Ideally, the zero should be fixed once and for
all. There are nevertheless two causes of inaccuracy. The first
is that we have to remove the sensors to pull up the cell
cover and empty the cell, and we cannot be sure to replace
them exactly in the same fashion from one experimental run
to the other. The second is that despite our care, the upper
surface of the grains is not perfectly flat and not at the same
mean position after each pouring process. The zero is thus
known to a precision of ±75mm. This value is used above to
estimate the uncertainty on the depth of the granular layer.

III. EXPERIMENTAL RESULTS

A. Shearing of freshly poured grains

In Fig. 2, we display the evolution of the tangential stress
T, normalized by the normal stressN (upper plot), and of the
dilatancy as a function of the displacementL (lower plot).
The rotation angleu is definedas the product of the driving
angular velocity by the time since we start the motor. During
elastic loading of the cantilever spring,u does not represent a
shearing angle, but rather the deformation of the spring. In
what follows we are interested in much larger rotations. The

linear displacementL is defined asL; R̄u. The experiments
shown in Fig. 2 are done for a normal stress of 9.73 kPa and

FIG. 1. Sketch of the apparatus. The drawing on the right is an
upper view, showing the cell that contains the beads and the 12 steel
teeth of the cover that are buried in them. The large arrow indicates
the imposed rotation of the cell; the cover is blocked by a cantilever
spring(not shown in the drawing), the deflection of which gives the
tangential stress applied on the beads. The drawing on the left is a
cutting of the side view. The bottom arrow indicates the imposed
motion of the cell, while the top arrow indicates the motion of the
cover, moving freely in the vertical direction because of the dila-
tancy of the granular layer.
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driving velocities respectively equal to 11, 110, and
1100mm/s.

Let us first consider the evolution of the tangential stress.
The initial response of the granular layer to the driving,
along the first 90mm, is shown in the inset. We see that the
tangential stress evolves linearly with distance. Moreover,
this evolution is reversible and no hysteresis is observed
when we reverse the direction of rotation. This initial re-
sponse is thus elastic, with a effective stiffness of 2.8
3105 N/m, which does not depend on the velocity. Beyond
typically 150mm, the response is plastic and hysteresis be-
comes observable. If we continue further the motion of the
annular cell, the tangential stress reaches a maximumT
=msN, then decreases toward a stationary valueT=mdN
(apart from fluctuations, which are dealt with below). The
maximumms may be defined as a static friction coefficient.
When it has been reached, the granular layer undergoes slid-
ing at a constant velocityV. The coefficientmd, defined as
the average ofT/N in this steady state, may indeed be iden-
tified with a dynamic friction coefficientmd,ms, as for solid
friction. When we plot the tangential stress in the steady state
as a function of the normal stress, as in Fig. 3, we indeed
obtain a straight line, with a slopemd<0.54.

In the experiments shown in Fig. 2, an additional mass of
6.33 kg is placed on the cover, which explains why the initial
dilatancy is negative. The evolution of dilatancy, shown in
the lower curve, is typical of dense granular pilings([1], Sec.
6.5). There is first compaction(about 50mm), then dilatancy
of the layer up to 450mm. The order of magnitude of this
effect may be recovered in a very simple fashion. As a very
crude approximation, suppose an initial regular HCP lattice.
A bead is supported by three others, and its center is at a
heightRÎ8/3 from the plane defined by the three bead cen-

ters. The bead may slide if it increases its height up toRÎ3,
being in contact with only two of the underlying beads.
Hence the dilatancy isDh<NRsÎ3−Î8/3d, whereN<10 is
the number of beads between the teeth extremities and the
cell bottom. This givesDh<750 mm, which is an overesti-
mate since the initial experimental packing fraction of 0.61 is
less than the HCP one of 0.74.

The striking feature of Fig. 2 is that either the tangential
stress(upper curves) or the dilatancy(lower curves) evolves
in the same fashion with distance, rather independently from
the velocity, which varies by two orders of magnitude. Those
evolutions are characterized by typicallength scales, not by
time scales.

This discussion may be made more precise if we define
several typical length scales for the system. First we intro-
duce Lsmsd, which is the distance necessary to reach the
maximum of tangential stress, after the elastic loading of the
granular layer. Then we may defineLsmdd, as the distance
necessary to reach the tangential stress steady state. In order
to get a result which does not depend too much on fluctua-
tions, we plot the tangent to the curveT/N, shortly after the
maximum. We then defineLsmdd as the necessary distance to
decrease towardmd along this tangent.

Let us now consider the evolution of the dilatancy. We
define a length scaleLshmind as the position of the minimum
of dilatancy. Then we introduceLsh`d as the distance neces-
sary to reach the steady-state dilatancyh`. We take advan-
tage of the fact that two straight lines naturally appear, tan-
gent to the experimental curve: one during the almost linear
increase of dilatancy that follows the minimum and the other
almost parallel to the abcissa axis in the stationary regime.
The intersection of those two straight lines provides a good
definition of Lsh`d, quite insensitive to fluctuations.

The values of those four different length scales are listed
in Table I, which shows that indeed they do not depend on

FIG. 2. Plot ofT/N (upper curves) and the dilatancy(in mm,
lower curves) as a function of displacement(in cm), for the same
normal stresss9.73 kPad and several driving velocities: 11mm/s
ssd, 110mm/s shd, and 1100mm/s spd. In the upper curve, the
inset shows the very begining of the motion, when elastic response
of the layer occurs. The data correspond to three different initial
states of freshly poured grains. The spatial resolution(1 point per
micrometer) is the same for all data, but for clarity the symbols are
shown each 1000 points only. The properties of the curves are sum-
marized in Table I.

FIG. 3. Plot of the tangential stress(in kPa) as a function of the
normal stress(in kPa). The tangential stress is measured in the
steady state, for a driving velocity of 11mm/s. The error bars cor-
respond to the 7% fluctuations level observed in the steady state.
The slope of the straight line, which is constrained to go through the
origin, is the average of all values ofmd, kmdl=0.54.
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the driving velocity. This result is quite obvious forLsmsd. It
only evidences that there is indeed a static friction coeffi-
cient, which implies a sufficient deformation of the cantile-
ver spring in order for sliding to begin. This length scale thus
appears because of the measuring process. This explanation
is not relevant for the other length scales. Their very exis-
tence is strong evidence that the collective behavior of the
layer is characterized by length scales, not time scales.

The data collected in Table I show that, at all velocities,
Lsh`d<Lsmdd. The stationary state for the dilatancy corre-
sponds to the one for the tangential stress. Recent theoretical
approaches[21,22] insist on the coupling between shear
stress and dilatancy(or free volume). Our data show that
indeed the respective evolutions of the dilatancy and tangen-
tial stress occur on the same length scales. The order of
magnitude of this length scale is 7 bead diameters in our
experiment. In the experiment of Chambonet al. [10], for a
Couette geometry, the typical displacement to reach the
steady state is of the order of 10 grain diameters(for a ve-
locity of 83 mm/s, a radial stress of 500 kPa, and a gap
between cylinders of 100 grain diameters). In the experi-
ments of Shibuyaet al. [6], two boxes of depth 750 grain
diameters slide one on the other(for a velocity of 4mm/s
and a normal stress of 50 kPa). If we consider Fig. 12 of
their paper, we see that the displacement is sufficient to reach
the steady state and evaluateLsh`d<Lsmdd<4 mm—that is,
25 grain diameters. Those values are in reasonable agree-
ment and show thatLsh`d and Lsmdd scale with the grain
diameter, not the depth of the layer.

In the experiment of Géminardet al. [8], the grains are
immersed in water and the normal stress very smalls20 Pad,
so it is difficult to make a direct comparison. Nevertheless,
their observations are quite the same as ours. They do ob-
serve that the steady state is reached for both tangential stress
and dilatancy after a displacement of typically 5 grain diam-
eters, for a depth of 30 particles(see their Fig. 2).

In granular media, the deformation is localized in shear
bands, first observed in triaxial experiments[23,24], typi-
cally extending to 10 grain diameters. Shear bands have been
observed in the experiments of Chambonet al. [10], with a 7
grain width, and in the experiments of Shibuyaet al. [6],
with a 20 grain width. In our experiment, the deformation
presumably extends from the extremities of the steel teeth
toward the bottom of the cell—that is, 10 grains. Thus, in
each case, the length scale necessary to reach the steady state
is the same as the width of the shear band. This is confirmed

by direct observation of the spatial distribution of stresses,
using photoelastic grains in a two dimensional(2D) Couette
geometry[9]. In the steady state the orientation of the force
chains in the shear band is indeed roughly 45° to the direc-
tion of shear. Our experiment shows that the stationary dila-
tancy is reached on a length scale of the same order of mag-
nitude. It means that, in order to build a shear band, shearing
must be performed along a distance equal to its width.

Let us add two remarks. The first one is that it is some-
what excessive to speak of shear bands in our setup, because
there are typically ten glass beads between the cell bottom
and the steel teeth, and thus the deformation presumably ex-
tends in the entire space between the teeth extremities and
the bottom. The second is that this characteristic size of shear
bands is strongly related to the fact that, in all the experi-
ments discussed until now[4–7,9,10,12,13,15,16], the shear-
ing takes place at a solid boundary. Recent experiments, us-
ing a different setup where shear zones are created far from
the sidewalls, show that no characteristic scale is observed
for the shear zone[11].

Up to now, the focus has been on the mean values for
tangential stress and dilatancy. As seen in Fig. 2, both quan-
tities exhibit fluctuations, which may be characterized by the
standard deviation of the data, in the steady state. Those of
dilatancy are very small, less than ±5mm or 1%. It means
that in steady-state sliding, rearrangements of the grains are
made at almost constant density. The fluctuations of tangen-
tial stress are much greater, their amplitudeDsT/Nd being
typically 0.035—that is, 7% ofmd.

If we Fourier transform the tangential stress as a function
of distance, in the steady state, the Fourier spectrum exhibits
a peak at a small wave vector, as shown by the inset of Fig.
4. Taking the inverse of this wave vector, we may define a
length scaleLfluc, characteristic of the fluctuations. We now
want to see if this length scale depends on the driving veloc-
ity.

For the sake of comparison, the data were taken on a
unique sample—that is, a unique initial density. We sheared
this sample at several velocities, along a distance sufficient
to collect enough data in the steady state. In practice, a 6-
cm displacement was done at each velocity, and we used the
last 3 cm of the registered data for each run. With this
method, the driving velocity is the only parameter that varies
from one experimental point to the other.

In Fig. 4 we plot the amplitude of the tangential stress
fluctuations, together with their characteristic lengthLfluc, as

TABLE I. Measurements corresponding to Fig. 2.V is the driving velocity,ms the static friction coeffi-
cient,Lsmsd the length at which it is attained,md the steady-state friction coefficient, andh` the steady-state
dilatancy. The lengthsLsmdd andLsh`d are the distances of shearing necessary to reach those steady states
(see text for their precise definition), and finallyLshmind is the position of the dilatancy minimum.

V smm/sd ms Lsmsd smmd md Lsmdd smmd h` smmd Lsh` dsmmd Lshmin dsmmd

11 0.65 2.2 0.52±0.03 8 453±5 11 0.6

110 0.75 2.5 0.59±0.03 9.5 488±4 9 0.5

440 0.75 3 0.60±0.04 8.5 413±4 10 0.8

1100 0.6 2.5 0.53±0.03 10 520±5 9 0.5

1760 0.77 2.2 0.67±0.04 7.5 440±6 10.5 0.5
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a function of the shearing velocity. Clearly, both quantities
are basically independent of the velocity. The tangential
stress fluctuations are thus characterized by atypical length
scale Lfluc, with an order of magnitude of 5 mm. Since the
shearing extends on typically ten layers, it means that fluc-
tuations between adjacent layers are of the order of
±500 mm. A displacement of this size, not very different
from a grain radius, is sufficient for a grain to break a contact
and create another one, and such phenomena are presumably
responsible for the tangential stress fluctuations.

B. Stop-and-go experiments

In this section, the focus is on the tangential stress and
dilatancy response when we stop the external drive and re-
start it after some waiting time. The first step is to prepare a
sample in a steady state. After pouring the grains in the an-
nular cell, we rotate the cell of an interval between two ad-
jacent teeth—that is, a 30° rotation or a displacement of
5.76 cm—at a given velocityV. Then we proceed tostop-
and-goexperiments, stopping the motor and waiting a given
time twait, from 90 s up to several hours. During the waiting
time, the grains are thus submitted to both normal and tan-
gential stress. Then we restart the motor at thesamevelocity
V which was used to prepare the sample and so on.

A typical result of such an experiment is given in Fig. 5.
Let us first focus on the upper curve, which shows the evo-
lution of the (dimensionless) tangential stress. Just after the
stop, there is a small decrease in tangential stress and a very
slow creep during the waiting time. When restarting the
shearing, the interface resists elastically up to a maximum

value of the tangential stress. It means that during the stop
under normal and tangential stress there has been an evolu-
tion of the effective(static) friction coefficient. The system
exhibitsaging. If we pursue the displacement of the grains,
sliding occurs and the tangential stress recovers its steady-
state value, at the same level as before the stop. There is
rejuvenationof the granular layer under shearing.

Let us defineDm as the difference between the value of
T/N at the peak and its value in the steady state. This quan-
tity is plotted as a function of the waiting time in Fig. 6; to
estimate the error made in the measurements, ten identical
stop-and-go experiments(same sample, same waiting time of
30 mn) have been done. The standard deviation of the mea-
surements for theDm peak and the relaxation timet (see
below) give the error bars in Figs. 6 and 7. The quantityDm
increases roughly as the logarithm of the waiting time, and in
all experiments the slope ranges in the intervalf0.01,0.02g
per unit logarithm. We do not observe any significant evolu-
tion of the slope with the imposed driving velocity. This
logarithmic increment of the effective static friction coeffi-
cient has been observed by de Rycket al. [5], with a slope of
0.01, for normal stresses of the same order of magnitude as
in our experiment. It is also observed for a quartz gouge
between granite blocks at high normal stresss25 MPad with
a slope 0.005[15,16]. In Fig. 6, we show two sets of data.
Open circles correspond to experiments done just after
sample preparation(pouring the grains and 30° rotation at

FIG. 4. Left ordinate,n: characteristic lengthLfluc of the fluc-
tuations of normalized tangential stress(in cm), in the steady state,
as a function of the driving velocity(in mm/s). Right ordinate,s:
amplitudeDsT/Nd of those fluctuations as a function of the driving
velocity. The inset shows the power spectrum of the tangential
stress in the steady state(arbitrary units), as a function of the in-
verse wavelength 1/L (in cm−1), and clearly exhibits a rather broad
peak, from which we calculateLfluc,L<5 mm. For all data, the
normal stress is the same,N<9.73 kPa; the power spectrum is
obtained for a driving velocity of 880mm/s.

FIG. 5. Evolution of the normalized shear variation(upper
curve) and dilatancy variation(lower curve, inmm) with time, in a
stop-and-go experiment. The resolution is 400 point/s or
9 point/mm. The sample is prepared under a normal stress of
9.73 kPa and a driving velocity of 44mm/s. The dotted lines indi-
cate the stop timest;0 sd and the restart timest=7230 sd. Here 3 s
are shown just after the stop, and 2 s just before the restart, during
the creep. In the upper curve, we show an exponential fit of the
evolution of the tangential stress from its maximum value toward
the steady state. The small “spikes” in the tangential stress data may
be due to the motor. Their typical frequency is roughly 2 times the
number of steps per seconds, and they disappear when the motor is
stopped. The high-frequency oscillations, in the dilatancy data, are
instrumental noise. They are related to the electronics, not to the
motor, since they persist during the stop.
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constant driving velocity). The logarithmic fit is not good at
small waiting time. A curve of the same shape has already
been observed by Losertet al. [14] (see their Fig. 5), for a
stop-and-go experiment in a linear geometry, at comparable

driving velocity (28.7mm or 0.25d/s in units of their grain
diameter) and waiting times, but a very small normal stress
of 20 Pa.

This phenomenology is also observed in solid friction ex-
periments[25,26]. In this context, the contact of the two
rough solids occurs between microasperities, and aging is
interpreted as a yielding of those microasperities under
stress. This leads to an increase of the actual contact area
between the two solids during the waiting time, hence an
increase in the friction coefficient. Resuming the shear, slid-
ing begins and the microcontacts are progressively destroyed
and replaced by new contacts between fresh asperities. Slid-
ing implies rejuvenation of the frictional interface. The phe-
nomenological rate and state model of Dieterich, Rice, and
Ruina [27,28] (DRR) has been introduced to describe the
dependence of the friction coefficientm on sliding velocityẋ
and on an internal variablef describing the age of contacts.
In this model,

m = m0 + a ln
ẋ

V0
+ b ln

fV0

Dc
, s2d

df

dt
= 1 −

fẋ

Dc
, s3d

wherem0 is the steady-state friction coefficient at constant
sliding velocityV0, Dc is a characteristic length, anda andb
two material-dependent constants. Those equations must be
completed by one describing the dynamics. Neglecting the
inertia, this last equation may be written

KsV − ẋd = W
dm

dt
, s4d

whereK is the spring stiffness andW is the weight supported
by the grains.

FIG. 6. Plot of the friction coefficient peakDm at restarting
(linear scale), as a function of the waiting time(logarithmic scale).
The two different symbols correspond to the same stop-and-go ex-
periment, done on the same sample, just after sample preparation
ssd and after the first experimentsnd. The slope of the fit, which
corresponds to the coefficientb of Eq. (2), is 0.010 in the first case
and 0.012 in the second case. The velocity for sample preparation
and restart was 22mm/s, and normal stress was 10.78 kPa.

FIG. 7. (a) Plot of the characteristic timet as a function of the waiting time, for stop-and-go experiments made at several different
driving velocitiesV (,, 5.5 mm/s; s, 11 mm/s; L, 22 mm/s; P, 44 mm/s; n, 88 mm/s). (b) Plot of the productt3V, as a function of
the waiting time, for the same experiments(same symbols). It is clear that the data collapse around a mean value of 10mm.
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The state variablef is basically the age of the contact.
Without sliding—that, isẋ=0—f= t and the model includes
the logarithmic increase of the static coefficient of friction
with contact time. Formally, there is a divergence in Eq.(2)
at ẋ=0 but any measurement of the friction coefficient im-
plies that the surface undergoes slip at some scale[2]. Under
constant driving velocityV, the steady-state solution of Eqs.
(2)–(4) is

ẋ = V, f* = Dc/V, md = m0 + sa − bdlnsV/V0d. s5d

When sliding sets in, the structural agef decreases from
its initial value, after a waiting timetwait, toward the smaller
valuef* reached in steady motion: the DRR model includes
rejuvenation of the interface as well.

The sliding velocity is equal to the driving velocityV in
the steady state. It is also the case just at the peak value[26].
Indeed,KsV− ẋd=Wdm /dt=0 just at the peak. Hence a rough
estimate of the relaxation off is obtained if we assumeẋ
=const=V. A small perturbationf=f* +df evolves follow-
ing

ddf

dt
= −

V

Dc
df, s6d

which corresponds to an exponential relaxation with the
characteristic timet;Dc/V. Sincedf is a small perturba-
tion, m is linear indf and its relaxation toward steady state
occurs with the same time scalet. The lengthDc is thus
identified as the characteristic length necessary for contact
rejuvenation to occur. In what follows, we will use those
results obtained in a linear geometry, because as we said
before the radius of the annular cell is much greater than its
width and curvature effects may be neglected[5].

Let us focus now on the relaxation toward the steady state
for the tangential stress in our granular system. As shown in
Fig. 5, it is quite well described by an exponential fit. In the
case of the figure, the characteristic time is 0.27 s. We made
a systematic study of similar stop-and-go experiments, vary-
ing only the driving velocities. The results are displayed in
Fig. 7. From Fig. 7(a), we see that this relaxation time is
independent of the waiting time, but depends on the shearing
velocity V. When we plot the productVt, all the data col-
lapse on a single curve as shown in Fig. 7(b). This means
that the relaxation is described by acharacteristic length, the
value of which is about 10mm. Another way to see this is to
plot t, averaged on all waiting times at a given angular ve-
locity V, as a function of 1/V. This is done in Fig. 8.

The order of magnitude forDc is microscopic, but much
larger than in the context of solid friction, whereDc
<0.5 mm, an order of magnitude roughly comparable with
that of a microcontact between asperities[25]. A length scale
much smaller than the bead radius and much greater than the
typical size of asperities, which appears naturally in a granu-
lar piling, is the size of the contacts between the grains. This
latter may be roughly estimated if we consider that the nor-
mal stress is borne by “columns” of grains. LetS be the area
of the cell andd the mean grain diameter. There are roughly
S/d2 columns of grains that bear the normal forceNS, for a
normal stressN. The force on each column is thusNd2. Us-

ing Hertz theory of the contact between spheres([29], Sec.
9), we get for the contact diametera a value ranging between
8 and 12mm, for normal stresses ranging between 3.3 and
11.3 kPa. This order of magnitude compares very well with
that ofDc. We think that this comparison is relevant, because
a column of grains behaves like a chain of frictional contacts,
which before sliding behaves like a chain of springs resisting
tangential stress. Sliding will occur at the weaker contact,
relaxing the stress in the rest of the chain: the typical length
necessary to relax the stress in the chain is thus the size of
this weaker contact. This picture is of course oversimplified,
because we consider only one column and sliding occurs on
all the annulus surface. Nevertheless, we think that it is rea-
sonable to consider that initially the sliding is concentrated
on a single contact, rather than being shared among all con-
tacts. We tried to exhibit a variation ofDc with the normal
stress. It is not completely convincing, because of the rather
large scatter in the data[see Fig. 7(b)] : we measure 9±3mm
for 3.3 kPa and 14±3mm for 11.3 kPa. The only thing that
can be said with confidence is that it does not contradict our
interpretation ofDc.

Let us finally discuss the evolution of the dilatancy,
shown in the lower curve of Fig. 5. If we consider what
happens when we restart the driving, it is perfectly clear, and
observed in every such experiment, that the dilatancy does
not evolve during the elastic reloading of the granular layer.
It means that configurational rearrangements of the grains do
not occur in the granular layer at a significant level until the
beginning of sliding. The dilatancy evolution at the resuming
of sliding is very small, even smaller than typical fluctua-
tions in the steady state. Moreover, it does not depend on the
waiting time, as shown in Fig. 9. This is another piece of

FIG. 8. Plot of the characteristic time taken by the tangential
stress to evolve toward its stationary value, averaged over all wait-
ing times, as a function of the inverse angular driving velocity 1/V.
The error bars are the standard deviation around the mean value.
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evidence that, during the stop, basically no structural rear-
rangement occurs in the granular layer.

This is consistent with our previous picture of “columns”
of grains, in which contacts are established between grains in
such a way that they support the weight of the cover. They
age during the waiting time, and when we resume the shear
they respond elastically, up to a maximum stress. Then slid-
ing occurs, and the dilatancy evolves. This picture is sup-
ported by the results of Utter and Behringeret al. [12]. In a
2D Couette experiment at constant volume, with photoelastic
grains, they visualize the stress distribution at the grain scale
during a stop-and-go experiment. This distribution is not ho-
mogeneous, but rather concentrated along stress chains.
Those stress chains, established in the steady state, are al-
most not perturbed during the wait, neither by restarting the
shear in the same direction as before the stop. The lack of
large grain rearrangements in their observations is consistent
with the lack of dilatancy variations during the stop which is
seen in our experiments. Aging, as evidenced by the peak in
tangential stress at restarting shown in Fig. 5, is thus not
explained by structural rearrangements of the piling, but
rather by the behavior of contacts between grains.

When the contacts are between plastic materials, such as
contacts between microasperities of PMMA blocks[25], or
between quartz grains at very high normal stress[3,7], aging
may be interpreted as due to yielding at contacts, which in-
creases the actual contact area, hence the strength of the
contact. This is difficult to invoke for brittle material such as
glass. Aging at the contacts may be due to some contami-
nants or to condensation of water vapor.

C. Velocity jumps

In the Dieterich-Rice-Ruina model(2), the friction coef-
ficient depends on the sliding velocity. A velocity jump from
V− to V+ should lead to a variation of the steady state friction
coefficient:

Dmstat= sa − bdln
V+

V−
. s7d

A sudden change of velocity is not necessary to observe this
effect, which expresses the fact that the steady-state friction
coefficient depends on the sliding velocity. We may use the
data already used for Fig. 4, since they were obtained for
several sliding velocities, but only one initial density. In Fig.
11(a), below, we plot the effective friction coefficient, aver-
aged on a large sliding distance(typically 3 cm), as a func-
tion of the sliding velocity. The data are consistent with the
DDR model, but the error bars, which are given by the am-
plitude of fluctuations displayed in Fig. 4, are quite large. In
this respect, velocity jump experiments give better results.

If the velocity jump is instantaneous, there is another ef-
fect: The value off just after the jump is unchanged,f
=Dc/V−, and there is an instantaneous increment in the fric-
tion coefficient

Dminst = a ln
V+

V−
. s8d

The relaxation from the peakDminst toward the steady state at
velocity V+, Dmstat, takes places on a characteristic distance
equal toDc [2].

We thus perform(quasi-)instantaneous velocity jumps,
from V− to V+.V−. The sample is prepared by initial shear-
ing at uniform driving velocityV− during a 30° rotation.
Then, we perform series of jumps withthe same V−, and
several values ofV+, in increasing and then decreasing order
(typically from 0.2 up to 1.8 mm/s). We make sure that the
large velocity displacement is sufficient to reach a steady
state.

A typical experimental result is given in Fig. 10, showing
the (dimensionless) tangential stress in the upper curve, the
dilatancy in the lower. We do observe the variationDmstat of
the stationary values for the effective friction coefficient. The
granular layer is velocity strengthening(i.e., the tangential
stress increases with the velocity). Our velocity jumps are
performed after large cumulated shear displacements, 6 cm
or 40 bead diameter for each data point, and we always do
observe velocity strengthening of the granular layer. This
was not the case in the experiments of Mair and Marone[7],
who observed a transition from a first velocity strengthening
regime toward a velocity weakening one, for a displacement
of 100 grain diameters. But in the case of their experiments,
they begin the velocity jumps before reaching the steady
state. Their velocity strengthening regime is a transient, dif-
ferent in nature from the one that we observe.

In Fig. 11(b), we plot the evolution of the variation of
friction coefficient with the higher velocityV+, for several
lower velocitiesV−. The data follow a logarithmic evolution,
and when plotted as a function of the ratioV+/V− they col-
lapse onto a single curve, in agreement with the DRR model

FIG. 9. Plot of the dilatancy variation after restarting as a func-
tion of waiting time, in logarithmic scale. The data correspond to
the same experiments as in Fig. 6, and the symbols have the same
significance. The variation of dilatancy is always very small(com-
pared either to a mean level of 350mm or to fluctuations about
±5 mm; see Fig. 2) and independent of the waiting time.
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(7) [see Fig. 11(c)]. The data are consistent with those of Fig.
11(a), which are obtained in a completely different way. The
slope, equal toa−b in the model, is 0.036 and ranges in the
interval [0.03 0.05] in all experiments. With our previous
measurement ofb, this means thata ranges in the interval
[0.04 0.07].

We may compare our results to those of the geophysicists
[2,3,7], and those of Géminardet al. [8]. Those experiments
are quite similar, except for the normal stress which is very
low in [8], typically 20 Pa, and very high in[2,3,7], typically
25 MPa, to be compared to the order of magnitude of the
normal stress in our experiments, 30 kPa. Those stresses may
be compared directly because the Young’s moduliY of the
grains, either glass bead as in the present work([8], Y

=60 GPa) or granite ([2,3,7], YP f50,70g GPa), are very
similar.

No evolution of the friction coefficient is observed in[8],
with a velocity varying over four orders of magnitude, from
0.1 up to 1000mm/s, or 10−3 up to 10 bead diameters per
second. Under high stresses, both instantaneous increment
Dminst and steady-state incrementDmstat are observed in
[2,3,7]. We do not see the instantaneous incrementDminst in
our experiment, in contrast with the DRR model, Eq.(8).

The instantaneous incrementDminst is linked to the state
variablef that describes aging in Eqs.(2) and(3). Since we
do observe aging in our system, it is quite puzzling not to see
any instantaneous increment. We will thus discuss at length
the possible explanations for our result.

The space resolution of the data is at least 0.11mm be-
tween two points, at velocityV+. This is much less than the
value of Dc<10 mm, so that a lack of resolution is not a
relevant explanation.

The variations of friction coefficient are rather small com-
pared to the fluctuations in the steady state, and we must
make large changes in velocity(by a factor of 20, typically).
It is thus not obvious that the velocity change is actually
instantaneous. The rotation is ensured by a stepping motor,
and the maximum angular acceleration is 0 to 0–40° /s in

250 ms, henceV̇max=0.3 m/s2. In all cases, the low velocity
is negligible. For a high velocity ranging from 0.2 up to
1.8 mm/s, the duration of the accelerated motion ranges be-
tween 0.36 and 5.7 ms, corresponding to a distance between
0.02 and 5.1mm. Even in the worst case, this distance is less
thanDc (for the case of Fig. 10, the motion is accelerated for
the first 1.25mm, much less thanDc). Hence it does not
seem that an insufficient acceleration should be the explana-
tion.

Assuming that the instantaneous change of driving veloc-
ity creates a sudden jump in friction, this implies further
deformation of the cantilever spring, hence the motion of the
cover plate. The typical time scale for cover motion is
Îm/ s2kd, where the factor of 2 comes from the moment of

FIG. 10. Example of velocity jump; the upper curve shows the
tangential stress, the lower curve the dilatancy, inmm, as functions
of time, in s. The low velocity isV−=11 mm/s st,0d, the high
velocity is V+=880mm/s st.0d. The normal stress is 9.73 kPa.
The time origin is taken at the jumpV−→V+. The amplitude of
dilatancy variation should be compared to the dilatancy fluctuations
in steady state, typically ±5mm (see Table I), and to the dilatancy
variation in a stop-and-go experiment(see Fig. 9).

FIG. 11. (a) Value of the effective friction coefficientkml (averaged over a large distance, typically 3 cm), in the steady state, as a
function of the velocityV in a logarithmic scale. Data are the same as those used in Fig. 4. Note that error bars(typically ±0.05) are much
lager than in the case of(b) (typically ±0.02), due to the measuring process.(b) Value of the increment of effective friction coefficientDmstat

for a velocity jumpV−→V+, in the steady state, as a funtion ofV+. The abcissa is given in a logarithmic scale, for several values ofV−:
V−=5.5 mm/s (solid triangles), V−=11 mm/s (soild circles), andV−=22 mm/s (solid squares). (c) Same data, with the same symbols, but
plotted as functions ofthe ratio V+/V−, in logarithmic scale. All data collapse on a single curve. The normal stress is 9.73 kPa. The error bars
are estimated from the fluctuations ofT/N. For (a), those fluctuations are displayed in Fig. 4. For(b) and(c) they are much less since they
are calculated on a much shorter distance.
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inertia of a plain disk of massm. In the case of Fig. 10,m
=9.6 kg and this time scale is only 2.5 times less thanDc/V;
it is not obvious to consider the cover motion as instanta-
neous, so that we cannot exclude completely inertial effects.

The physical reason for the instantaneous jumpDminst, in
the context of solid friction, is that the system has to slide on
a distanceDc for the complete renewal of asperities[27]. In
experiments on granular gouge[2,3,7], the thinest granular
particles created by wear of the rocks surface and comminu-
tion of the initial grain layer should play the role of the
asperities. Such phenomena are not relevant for our experi-
ments, which are done at much smaller normal stresses. An-
other point is that, in order to see aging in our system, we
have to wait typically hundreds of seconds: no effect is seen
for a waiting time of 1 or 10 s. The steady state valuef* , for
a sliding at the lowest velocity of 5mm/s, is 2 s, which is
probably not enough to see any effect.

A careful measurement of the coefficienta of Eq. (2) has
been made by de Rycket al. [5], and they found good agree-
ment between the model and their data. They used an annular
shearing box, normal loads comparable to ours, and siliga gel
grains of typical size 0.1 mm. But they measureda during
the creep in a stop-and-go experiment, not by imposing ve-
locity jumps on the grains. In the creep phase, the response
of the granular layer is mainly due to the behavior of the
frictional contacts, without significant rearrangements of
grains, which is definitely not the case for a velocity jump.

As shown by Fig. 10, an increment of dilatancy follows a
driving velocity jump. Such a dilatancy increment has been
observed by Mair and Marone[7], but not by Géminardet al.
[8]. It is very difficult to compare those results, because of
the very different orders of magnitude for the normal
stresses. In the experiments of Mair and Marone[7], the
grains are progressively broken and the granularity is not
constant during the shearing, which is not the case in our
experiment. They nevertheless measure a dilatancy incre-
ment of typically 2% of the mean grain diameter, for
V+/V−=10 and a layer of 40 grains. This is roughly the same
in our experiments(see Fig. 12; the increment is 10mm for
V+/V−=20 and a layer of 15 grains). The lack of dilatancy
increment when varying the driving velocity, evidenced in
the experiments of Géminardet al. [8], is probably due to the
very low normal stress in their experiments. In fact, they
always observe a smaller dilatancy than we do. When they
shear freshly poured grains at constant driving velocity, the
dilatancy increment is 5mm or d/20, for a layer of depth
30d, in units of the beads diameterd. In the same kind of
experiment, we obtain a dilatancy ofd/3 for a layer of 15d.

The dilatancy increment depends on the amplitude of the
driving velocity jump. The evolution of the dilatancy is
shown in Fig. 12, as a function ofV+/V−. It evolves logarith-
mically, with slope 13mm per unit of the quantity lnsV+/V−d.
The dilatancy variation(typically 50 mm) is significantly
greater than the dilatancy fluctuations in steady state
s±5 mmd. However, this variation is quite small when com-
pared to the dilatancy of freshly poured grains(typically
500 mm). For V+/V−<100, the dilatancy increment is about
50 mm. Dividing by the numbers<10d of granular layers
below the teeth extremities, we get 5mm, which is compa-
rable to the roughness of the beads. Thus the mecanism of

the dilatancy variation during a velocity jump may be related
to the behavior of individual frictional contacts, whereas the
shearing of freshly poured grains necessarily involves struc-
tural rearangements of the grains.

IV. CONCLUSION

We have studied the low-velocity shearing of a confined
granular layer. The dimensionless shear rate varies between
10−6 and 10−4 [Eq. (1)].

A first result is the evidence that the response of the
granular layer under shearing is described bycharacteristic
length scales, not time scales. Those length scales describe
the evolution of the layer toward a steady state and the stress
fluctuations when this steady state is reached. Importantly,
the steady state for tangential stress is reached on the same
length scale as that for dilatancy. It shows that there is an
intricate coupling between the tangential stress variations
and those of dilatancy, or free volume.

When the driving is stopped and the grains are kept under
normal and tangential stress, the system ages, showing a
logarithmic increase of static friction coefficient with waiting
time. There is no evolution of the dilatancy during either the
stop or elastic reloading of the granular layer at the begining
of restart. Aging is thus not due to structural rearrangements
of the granular layer, which would imply changes in density.
The contacts between the grains, established at the stop and
supporting the stress during the waiting time, are responsible
for aging.

Resuming the shearing, there is rejuvenation of the sys-
tem. Several experiments, done at different driving veloci-
ties, provide evidence that this rejuvenation occurs with a

FIG. 12. Plot of the increment of dilatancy, inmm, for a velocity
jump V−→V+, as a function of the ratioV+/V− in logarithmic scale.
The normal stress is 9.73 kPa.
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characteristic lengththat may be identified with the param-
eter Dc of the Dieterich-Rice-Ruina model. We findDc

<10 mm, which is the order of magnitude of a Hertz contact
between adjacent grains. The cover plate, during the waiting
time, is held by several chains of contacting grains. Each
contact resists to shear up to a maximum value, and the
chains are broken when the weakest contact breaks. A length
scale of the order of the lateral size of a Hertz contact is thus
sufficient for this process to take place everywhere in the
cell, such that sliding occurs and rejuvenates the granular
layer.

When driving velocity jumps are imposed on the grains,
the system exhibits velocity strengthening behavior. The
variation of friction coefficient, in the steady state, is a loga-
rithmic function of the upper velocityV+. Data obtained for
several lower-velocityV− collapse onto a single curve when
plotted as a function of lnsV+/V−d. No instantaneous increase
is observed for the friction coefficient. This cannot be related
to a poor resolution, neither to insufficient acceleration.

When the higher velocity is kept constant on a sufficient
distance, a steady state is reached for the dilatancy, and the
dilatancy increase is a logarithmic function ofV+/V−. The
order of magnitude of this effect indicates that the response
of the layer probably does not involve structural rearrange-
ments of the grains.

With our experimental protocol, the stop-and-go and ve-
locity jump experiments are done when the shear band is
fully established. In this regime, our measurements are well
described by the Dieterich-Rice-Ruina model[21,22], which
does not include the dilatancy, which thus appears as a
slaved variable. On the contrary, the dynamics of shear band
building, just after filling the cell, exhibits a strong coupling
between tangential stress and dilatancy.
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